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Abstract:  

The Present Paper deals with the study of the linear oscillation of the centre 

of mass of the system in case of elliptic orbit about the stable position of 

Equilibrium near the Parametric resonance under the Influence of air resistance 

and magnetic force. 

Introduction:  

During the study of non – resonance oscillation of the system with the help of 

B.K.M. method [1] where the eccentricity of the elliptical orbit of the centre of mass 

has been taken as small parameter. It has been analyzed by [2] that this solution 

fails for n = 1 which gives the main resonance and for n =  ½ which indicates the 

parametric resonance where n is function of air resistance and magnetic force. 

Attempts have been made by, [2] to deduce the solution valid at the near the 

main resonance n = 1. 

In this paper our attention to the study of the linear oscillation of the system 

about the stable position of Equilibrium at and near the parametric resonance n = - 

½ by using Bogoliabov – Krilov Metropolsky Method [1] by taking the eccentricity 

e of the elliptical orbit of the centre of mass as a small parameter. 
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Equation of Motion in Polar Form: 

The equation of motion of the two satellites of the system in case of two 

dimension when the centre of mass moves along a Keplerian Elliptical orbit have 

been obtained in the form 
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Where dashes denote differentiations w.r.to true abnormally v of the centre of mass 

the given constraint 
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Where   
vecos1

1


    ……(3) 

  being eccentricity of the orbit. 

Equation 2 that is the particles is moving along the circle of variable radius given 

by 

2
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Equation of motion given by (1) to polar form. 
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Differentiating the two relation of (5) write true anomaly v, we get 
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Moreover, we have from (3) 

vpe sin2      ……..(8) 

Using (3), (5) , (6) , (7) and (8) in (1) 
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Multiplying (9) by sin  and (10) by cos  and subtracting the first from the second, 

we obtain 
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The equation (11) is nothing but the equation of member of dumbell satellite in the 

central gravitational field of force under the influence of atmospheric resistance 

and magnetic force. 

Equation for linear oscillation of the system about the position of 

Equilibrium for small eccentricity: 

The equation of motion of the system given by (11) equatorial orbit is 

obtained by putting i = 0 in the form 
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This is a second order differential equation with periodic terms as well there 

appears small quantities, the eccentricity of the orbit, which is of our great 

advantage, for e = 0 equation (12) reduce to the case of circular or motion of the 

centre of mass of the system for equatorial orbit which has already been discusses 

[3] that there exists a stable position of equilibrium for equatorial orbit I = 0 given 

by 
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In order to study the linear oscillation of the system about the above mentioned 

stable fasition of Equilibrium given by (12) or taking e to be a small parameter, let 

us substitute. 
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Hence, linearising the equation of motion (12) in case of equatorial orbit with 

respect to    and    , we obtain 
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Assuming the eccentricity e as a small quantity of first order infinitesimal 









B

vBf
vBvven

3

cos
cossin2sin22   

B

vnf
vf

B

vBfn
vB







3

cos2
cos2

3

sin
sin

2

 









B

vf
vfn

3

sin
sin

2

    …….(15) 

where  
B

f

B

f
Bn







3)3(

3
)3(

2

2

2
2

 

If the centre of mass of the system moves along circular orbit, then e = 0, so 

equation (15) reduces to 
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02  nn     ………(16) 

The only equilibrium position is given n = 0 and it has been found to be 

stable in [2] if the centre of mass moves along the elliptical orbit e  0, and hence 

the centre of mass of the system moves under a forced vibration account of right 

handed periodic since force in the equation (15). It has been seen by [3] that for n = 

1 the system is influence by the main resonance and for n =   ½ the system is 

influenced by the parametric resonance and hence the non – resonance solution 

fails. 

Therefore we are going to construct the general solution of the oscillatory 

system based on B.K.M. method which is valid at and near the parametric 

resonance n =  ½  

Linear oscillation of the system about the position of equilibrium for 

small eccentricity near the Parametric resonance n = - ½  

Assuming e, the eccentricing of the orbit of the centre of mass of the system 

to be a small parameter, the solution in the first approximation of the equation (15) 

at the parametric resonance (n = - ½) can be sought in the form. 
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Where amplitude a and phase   must satisfy the system of ordinary differential 

equation  
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and A1 (a,  ), B1 (a ,  ) are the periodic solutions periodic with respect to  of the 

system of partial differential equation. 
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Now substituting the value of ),,,(0 nnnvf  from (20) on the R.H.S. of (19) 

and then integrating we have. 
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the particular solution periodic with respect to of this system is 

obtained as. 
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Now substituting the values of A1 and B1 from (22) in (18) we get 
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the system of equation (23) may be written as: 
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Obviously the system of equation (24) being in canonical form has a first – integral 

form. 

0      …..(26) 

which reduces the problem to quadrature. Here Co’ is the constant of integration.  
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But we are interestecl in qualitative study of the problem and hence we shall 

analyse the integral curves in the phase plane (a,  ) in order to plot the integral 

curves but us put in the form  

(4n2 – 1) a2 – 4a e (cos2 – r sin2 ) + lo = 0   …(27) 

where  l0 = 4(2n+1) l01 

Equating the right hand side of the first equation of (23), to zero we get 
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for  n = 0.49 , B = 0.03  , f = 0.5 
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Tan 2  = -3.149 

Tan 2  = - 3.149 

     = -360.19’ (Approximate) 

The integral carve (27) has been plotted in figure for n = 0.49 and           e = 

0.01 with different values of l 0. It is obvious from integral curves drawn in the 

phase plane (a , ) that there exists one stationary region of amplitude. 

Conclusion:  

a = 0.025795 at  = -360.19’ (approximate) and d’s stable as the integral curve 

is a closed curve. Therefore we conclude that for gravity gradient stabilization of 

such a space system in elliptical orbit. 
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